Train
AMESA Train API Documentation
Overview
Trainer API
Basic Usage
from composabl import Trainer
from composabl_core.config.trainer_config import (
BenchmarkConfig,
RecordConfig,
PostProcessingConfig,
)
# Create trainer with configuration
trainer = Trainer({
"target": {
"local": {"address": "localhost:1337"}
},
"env": {
"name": "my-environment"
}
})
# Train agent
trainer.train(agent, train_cycles=100)
# Evaluate performance
results = trainer.postprocess(
agent,
postprocess_config=PostProcessingConfig(
file_path="model_files/",
record=RecordConfig(
avi_file_name="output.avi",
gif_file_name="output.gif",
max_frames=24 * 5,
),
benchmark=BenchmarkConfig(
num_episodes_per_scenario=2,
file_name="benchmark.json",
),
),
)
# Package for deployment
deployed_agent = trainer.package(agent)
# Clean up resources
trainer.close()Training Configuration
Complete Configuration Example
Training Targets
Local Target
Docker Target
Benchmarking
Benchmarking
Recording
Last updated